
INRA's Big Data perspectives
 and implementation challenges

Pascal Neveu
UMR MISTEA

INRA - Montpellier



Pascal Neveu / AG MIA 2014 2

Raises integrated issues and challenges:

– How to adapt agriculture to climate change?

– How agriculture impacts environment?

– Agroecology «producing and supplying food in a 
different way » 

– Global food security and needs of adaptation

– Plant treatment and food safety

– ...

Agronomic Sciences  
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Data challenges in Science
Modern science must deal:

● More data production

● A lot of experimental datasets available on the Web

● More collaborative and integrative approaches

→ Management, sharing and data analysis play an 
increasing role in research

Discover, combine and analyse
these data

→ Big Data Challenges
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Big data?

A buzz word

A definition: data sets grow so large and complex that it 
becomes impossible to process using traditional data 
processing methods (Management and Analysis)   
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Why data is big? 
● Devices, sensors, simulations, etc.
● Collaborative and participative
● Storage capacity, Internet access, etc.

Make data valuable (information and knowledge)

But  
● Less than 1 % of big data is analyzed
● Less than 20 % of big data is protected

(New Digital Universe Study)

Big Data vs Survey Sample theory
 

Big data
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Agronomic Big data
 V characteristics

● Volume: massive data and growing size
 → hard to store, manage and analyze

● Variety and Complexity: different sources, scales, disciplines 
different semantics, schemas and formats etc. 
→ hard to understand, combine, integrate, 

● Velocity: speed of data generation
 → have to be process on line

● Veracity

● Validity, , Vulnerability, Volatility, Visibility, Visualisation, etc.
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Why Big Data is important in 
Agronomic Sciences?

Production of a lot of heterogeneous data for understanding
  

● Open new insights 

● Allow to know:

– Which theories are consistent and which ones are not!  

– When data did not quite match what we expect…

● Decision support: Combine, transform, analyse, design 
models, predictive approache needs
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Illustration: High throughpout phenotyping 

High throughput?

Various Environments

Many Plant Genotypes

High frequency and
many trait observations
of Phenotypes

Interactions
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Why high throughput phenotyping 
is important for agriculture?

● Adaptation to climate change

● More efficient use of natural resources (including water 
and soil) in our farming practices

● Sustainable management and equity
 

● Food security
Crop performance (yields are globally decreasing)

● …

Genotyping and Phenotyping

Plant phenotyping has become a bottleneck for progress in plant 
science and plant breeding
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What to measure?



11 avril 2013

 Pascal Neveu 11

Phenome 
High throughput plant phenotyping 

French Infrastructure
 9 multi-species plateforms

● 2 controlled platforms
 

● 5 field platforms

● 2 high throughout omics
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5 Field Platforms

Various scales and data types
● Cell, organ, plant, canopy, population
● Images, hyperspectral, spectral, sensors, actuators, human 

readings... 
Thousands of micro-plots

time
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2 Controlled Platforms
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2 « Omics » platforms

●  

Grinding  
weighting (-80°C)

Extraction
Fractionation

Pipetting
Incubation Reading

Various data complex types

composition and the structure of 
biopolymers

Quantification of metabolites and 
enzyme activities
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Data management challenges
in Phenome: Volume growth

40 Tbytes in 2013, 100 Tbytes in 2014, … 

● Volume is a relative concept
– Exponential growth makes hard

● Storage
● Management
● Analysis

Phenome HPC and Storage→ Cloud (FranceGrille, EGI)
– Easy to use with a sort of « unlimited scalability »
– On-demand infrastructure and Elasticity (season)
– Virtualization technologies 
– Data-Based parallelism

(same operation on different data) 
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Data management challenges
in Phenome: Variety

– Can be produce by differents communities (geneticians, 
ecophysiologists, farmers, breeders, etc) 

– Data integration needs extensive connections to other 
types of data (genotypes, environments, experimental 
methods, etc.)

– Different semantics, data schemas, …
– Can be associated in many ways (environments, 

individuals, populations, etc.)

● Extremely diverse data

→ Web API, Ontology sets, NoSQL and
     Semantic Web methods
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Data management in Phenome: 
Velocity

– Controlled platforms produce tens of thousands 
images/day (200 days per year)

– Field platforms produce tens of thousands images/day
(100 days per year)

– Omics platforms produce tens of Gbytes/day
(300 days per year)

Scientific Workflow 
– Galaxy
– OpenAlea /provenance module (Virtual Plant INRIA team) 
– Scifloware (Zenith INRIA team)
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Data management challenges
in Phenome: Validity

Data cleaning
 

● Automatically diagnose and manage:
– Consistency?, duplicate? Wrong?
– annotation consistency?
– Outliers?  
– Disguised missing data?
– ...

Some approaches 
– Unsupervised Curve clustering (Zenith INRIA team)
– Curve fitting over dynamic constrains
– Clustering of Image histograms 
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Conclusion

High throughput phenotyping data:

– Hard to produce

– Hard to manage 

– Also hard to analyse 

Thank you for your attention
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